

Video Georegistration: Key Challenges **Steve Blask** sblask@harris.com **Harris Corporation GCSD** Melbourne, FL 32934

Definitions

- Registration: image to image alignment
 - Find pixel-to-pixel correspondences between images collected at different times, by different sensors, or from different view points, and derive or improve estimate of transformation T
- Georegistration: image to Earth alignment
 - Find pixel-to-point location correspondences between imagery and the surface of the Earth, and derive or improve estimate of *f*
 - One means: transfer high geodetic accuracy from controlled reference imagery and Digital Elevation Model (DEM) to video

Impact of Exploitation Support Data Errors

Panel Discussion

IEEE Workshop on Video Registration

Real World Airborne Video Georegistration

- Must deal with complex distortions
 - Minimize to simplify correspondence and improve global accuracy
- Must be robust and efficient
 - Exploit redundancy
 - Enforce global consistency
- Must deal with real world effects
 - Clouds, obscuration
 - Differences in collection angle
 - Differences in illumination angle
- Must be insensitive to
 - Image quality
 - Scene content
 - Sensor modality
 - Disparities in resolution

VG Performance Factors

• An exhaustive multivariate search space

pattern appearance

 the presence and distribution of distinctive pattern structure in the scene, "scene content"

terrain type

- 3D relief (flat, rolling, rugged)
- surface coverage
- video quality
 - resolution, spectral band
 - SNR, blur, sharpness, contrast
 - compression artifacts

reference imagery quality

- age
- geo-location precision, GSD
- video-reference differences
 - season, weather, time of day
 - camera differences
 - feature content & shape changes

viewing geometry / telemetry

- altitude, focal length, GSD
- look angle (obliquity)
- scan pattern

quality of ESD

- telemetry accuracy, rate, timestamp quality of DEM
 - post density, accuracy
 - bald earth vs. visible surface
 - age

match measure/approach

- gradient
- correlation
- point based or higher order features

optimization methods/approach

 conjugate gradient, Kalman filter, Levenberg-Marquardt, Gauss-Newton

Ouestion 3a

 Does ESD (Telemetry) really help register video with the reference image and DEM?

We use a priori knowledge of each sensor imaging event and a Digital Elevation Model (DEM) to project imagery to the 3D terrestrial surface

- Does ESD (Telemetry) really help register video with the reference imagery and DEM?
 - Greatly reduces search space (9 parameter airborne sensor model in our application)
 - Reduces amount of ref data preprocessing that may otherwise need to be done (e.g., feature extraction & geometric hashing that might otherwise be necessary for landmark recog.)
 - Availability of ESD is one simplifying assumption that is realistic for many operational systems!

Question 3b

- What are the hard problems in this area?
 - Unknown or unstable ESD / video time synchronization
 - Low reporting rate or missing telemetry parameters
 - Large error covariances for too many parameters (makes search space prohibitively large)

Question 6a

Does correlation still play an important role in registration?

Video Mission Image

Geo-Reference Imagery

Panel Discussion

Question 6a

- Does correlation still play an important role in registration?
 - Yes! Image patches are readily available, compact, information-rich features.
 - Robust correspondences are possible if scale, rotation, and 3D perspective differences have been reduced and global consistency is enforced.
 - Correlation in edge space accommodates different imaging modalities (EO, IR, SAR, etc.)
 - Iterative processing of the resolution levels of a Gaussian pyramid enables refinement of the alignment solution.

Question 6b

- Has anything new happened in the past 50 yrs?
 - Before computers, correlation was not practical
 - Fast hardware solutions made it ubiquitous in machine vision applications (Cognex's hammer)
 - Mutual Information approach lauded by the medical imaging community is more robust w.r.t. rotation and other distortions that cause 2D correlation to fail, but is computationally more expensive

Question 8

- What is the role of image features in video reg.?
 - Necessary for registration in urban areas and other complex 3D environments (2D correlation becomes very difficult in the presence of viewpoint uncertainty)
 - 2D-to-3D feature correspondences can be directly employed by resection algorithms (Stamos & Allen, "Automatic Registration of 2-D with 3-D Imagery in Urban Environments", ICCV'01 Poster Session 4)
 - Have proven to be useful for pose refinement (Hsu et al., CVPR'00)

Questions 8&9

IEEE Workshop on Video Registration

Question 9

- What are the next important unsolved problems?
 - Fully autonomous urban scene georegistration
 - regularity of structure (city block, bldg windows)
 - high edge content (too many (!) features)
 - Fully autonomous georegistration of video from platforms with no ESD or large ESD errors
 - Registration of airborne and ground-based views

Question 10

- Successful solutions and approaches
 - Depression angle ∈ [30°,90°], correlate in orthorectified scene space
 - Depression angle ∈ [0°,30°], correlate in video frame scene space
 - Edge space to fuse different image modalities
 - Global consistency of local matches
 - Iterative refinement (2D image, 3D DEM, N parms)
 - Bundle adjust to bridge poor scene content
 - Bundle adjust to accommodate zooming
 - Rigorous error propagation

Question 1: Orthomosaic Stills & Movies

Greyscale to Color Infrared

Color to Panchromatic

Panel Discussion