

An Autonomous 3-D Photogrammetric Approach **Steven G. Blask, John A. Van Workum** *{sblask, jvanwork}@harris.com Harris Corporation GCSD* to Airborne Video Geo-Registration

- Overview of Harris Registration Approach
- Airborne Video Extensions PVR System
- DARPA AVS-PVR Processing Results
- Discussion

next level solutions

Photogrammetric Model Based Registration Overview

- The images are subsampled to create reduced resolution data sets
- Software resampler creates patches at any required GSD on demand

Initial Transformation Process

• Use *a priori* knowledge of each sensor imaging event and a Digital Elevation Model (DEM) to project imagery to the 3D terrestrial surface

Initial Transformation Process

• Orthorectification places the images in a common orientation with minimal distortion present (unmodelled buildings & trees still layover)

Video Mission Image Geo-Reference Imagery

- • Multiple correlation peaks are computed for each grid point neighborhood
- A parametric hill finder is used to evaluate each peak
- The mean and standard deviation of registration error are calculated from the offset and average ellipse
- The best consistent subset of correlation peaks is chosen by sequential sorting
- • Offset vectors imply global ground "correction" needed to improve registration, wild pt. editing eliminates outliers

Sensor Adjustment Process

- Sensor parameters are adjusted to minimize the error between ground projections of common match points
- Conjugate Gradient Search, Least Squares, and Kalman Filter adjustment algorithms

Output & Derivative Products

- • **Improved telemetry used by Geolocation & Mosaic**
	- Telemetry parameters initialize sensor model to define a 3D ray through any pixel in the image, which may be intersected with the DEM to produce a geolocation or orthorectify a video frame.

By improving telemetry, we improve geodetic accuracy of pixels.

Registration Solution

• Advantage of model-based approach: can perform rigorous error propagation to characterize geopositioning solutions and provide *a posteriori* error covariances for adjusted sensor model params

$$
e = \sqrt{\left[\left(\frac{\partial f}{\partial x_1}\right)^2 \cdot \sigma_1^2 + \left(\frac{\partial f}{\partial x_2}\right)^2 \cdot \sigma_2^2 + \dots + \left(\frac{\partial f}{\partial x_n}\right)^2 \cdot \sigma_n^2\right]}
$$
\n
$$
x_1, x_2, \dots, x_n \text{ represents the parameters}
$$
\n
$$
\sigma_1, \sigma_2, \dots, \sigma_n \text{ represents the variances of } x_i
$$
\n
$$
f \text{ represents the function of the parameters}
$$

Airborne Video Extensions

Precision Video Registration System

PVR Architecture

RTVR Architecture

Telemetry Queue/Database

Affine Consistent Subset

• Required to account for scale and rotation distortion

200 Unregistered Frames

Selected frames from (in order) 1 hour, sparse features, class1, and class2 data sets, 29Mar99.

Raw telemetry errors in ascending order.

Original CSS Results

Selected frames from (in order) 1 hour, sparse features, class1, and class2 data sets, 29Mar99.

Outliers due to fuselage obscuration and low elevation angles

Registration errors for original consistent subset criterion in ascending order.

Affine CSS Results

Selected frames from (in order) 1 hour, sparse features, class1, and class2 data sets, 29Mar99.

Outliers due to fuselage obscuration and extremely low low elevation angles (17-20 deg)

Registration errors for affine consistent subset criterion in ascending order.

- • Sparse scene content of Airborne video requires accumulation of match points over space and time
- • Kalman filter adjustment vs. N-frame co-registration
	- –Adds one image at a time to solution
	- –Only need to estimate parameters for one image
	- –Smaller set of equations
	- –No waiting for additional images
- State vector **X** models *adjustments* to telemetry; slowly varying bias suggests constant state model is suitable:

next level solutions \blacksquare

• Compute MPt normalized image space residuals:

$$
\rho = \mathbf{\varepsilon}^{\mathrm{T}} \Sigma^{-1} \mathbf{\varepsilon}
$$

$$
\mathbf{\varepsilon} = \begin{bmatrix} y_1 - x_1 \\ y_2 - x_2 \end{bmatrix}
$$

- • Apply thresholds
	- – min. no. match points
		- 9 for frame-to-mono ref.
		- 5 for frame-to-stereo ref.
		- 4 for frame-to-frame
	- –avg. norm. res. [≤] 1 pixel
	- –max. norm. res. ≤ 2 pixels

Further Accuracy Improvement

PVR Georegistration Performance Using DOQ & DTED

Dynamic Worm (LSE, KF, & Prescreener) (LSE, KF, & Prescreener)

- Reference Data
	- –USGS Digital Ortho Quarter-Quad (1m GSD)
	- –NIMA Digital Terrain Elevation Data (100m posts)
- Timing Data
	- SGI Octane
	- –Dual 225MHz R10,000 cpu's
	- 512Mb RAM total
	- –Controller, Generator, Worm Combiner thread

NY Intersection Circle Stare

NY Intersection Circle Stare

NY Intersection Circle Stare

VA 15-Oct Fast Straight Line

VA 15-Oct Fast Straight Line

NC Suburban Run

DOQ Validation Summary

DOQ Validation Summary

References

- J. K. Bryan, D. M. Bell, A. J. Lee, N. H. Carendar, and F. H. Baker, "A New Image Registration Paradigm", *Electronic Imaging International Conference Proceedings,* Boston, MA, Sep. 1993.
- D. M. Bell, J. K. Bryan, and S. B. Black, "Mechanism for Registering Digital Images Obtained From Multiple Sensors Having Diverse Image Collection Geometries," U.S. Pat. No. 5,550,937, Aug. 1996.
- J. Hackett, D. Trask, and R. Cannata, "Automated Near-Real Time Registration and Geopositioning Based Upon Rigorous Photogrammetric Modeling," *ASPRS-RTI Conf. Proc.,* Tampa, FL, 1998.
- A. J. Lee, D. M. Bell, and J. M. Needham, "Adjustment of Sensor Geometry Model Parameters Using Digital Imagery Co-registration Process to Reduce Errors in Digital Imagery Geolocation Data," U.S. Pat. No. 5,995,681, Nov. 1999.
- R. Cannata, M. Shah, S. Blask, and J. Van Workum, "Autonomous Video Registration Using Sensor Model Parameter Adjustments," *Proc. 29th Applied Imagery Pattern Recognition Workshop,* Washington, D.C., Oct. 2000, pp 215-222.
- J. Van Workum and S. Blask, "Adding Precision to Airborne Video with Model Based Registration," *Proc. 2nd Int'l Workshop on Digital and Computational Video,* Tampa, FL, Feb. 2001, pp 44-51.
- S. G. Blask and J.A. Van Workum, "An Autonomous 3D Photogrammetric Approach to Airborne Video Geo-Registration," Invited Talk at *IEEE Workshop on Video Registration* held with *The Eighth IEEE International Conference on Computer Vision,* Vancouver, BC, Canada, July 13, 2001, http://www.cs.ucf.edu/~vision/workshop/workshop.html.

